If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2+2-33=0
We add all the numbers together, and all the variables
r^2-31=0
a = 1; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·1·(-31)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{31}}{2*1}=\frac{0-2\sqrt{31}}{2} =-\frac{2\sqrt{31}}{2} =-\sqrt{31} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{31}}{2*1}=\frac{0+2\sqrt{31}}{2} =\frac{2\sqrt{31}}{2} =\sqrt{31} $
| -4(n+9=12-(n-6) | | 120x=600+39x | | 1/4z^2+2=z | | (1)(3)(t+7)=24 | | 101/4z62+2=z | | 5x+20=x+100 | | 10x-7(x+3)=-45 | | 8x-3=6x-17 | | 4x+2-x=6x-4-3x+6 | | 1/3(t+7=24 | | 0.5n(n+1)=6 | | 4(x+4)+3(x+2)=7x+22 | | 6z=42+10 | | 10=d^2-5d | | 9=34(x+8) | | 8x^2+9=4x^2-4x=8 | | 3x-8=16.5 | | 20/3=30k | | 3x÷2+10=22 | | 5w^2+4+w=6 | | x+10+7x/2-5+x/2=180 | | X^2-3=7x | | x6-6x3−7=0 | | q^2+2q-5=0 | | x6−6x3−7=0 | | 2(3x-1)-4(x-7)=24 | | -7m-8=m-4-3m-8=4-m | | 5=1/2(8m+2)+4m | | 2/5x+10=1/5x+9 | | 6x2+12x+5=0 | | x+32=67 | | 25x-8+2=2x+5 |